Algorithms_in_C++ 1.0.0
Set of algorithms implemented in C++.
avltree.cpp File Reference

A simple tree implementation using nodes. More...

#include <algorithm>
#include <iostream>
#include <queue>
Include dependency graph for avltree.cpp:

Classes

class  node< Kind >
 

Typedefs

typedef struct node node
 

Functions

nodecreateNode (int data)
 
int height (node *root)
 
int getBalance (node *root)
 
noderightRotate (node *root)
 
nodeleftRotate (node *root)
 
nodeminValue (node *root)
 
nodeinsert (node *root, int item)
 
nodedeleteNode (node *root, int key)
 
void levelOrder (node *root)
 
int main ()
 

Detailed Description

A simple tree implementation using nodes.

Todo:
update code to use C++ STL library features and OO structure
Warning
This program is a poor implementation and does not utilize any of the C++ STL features.

Function Documentation

◆ createNode()

node * createNode ( int  data)

Create and return a new Node

21 {
22 node *nn = new node();
23 nn->data = data;
24 nn->height = 0;
25 nn->left = NULL;
26 nn->right = NULL;
27 return nn;
28}
int data[MAX]
test data
Definition: hash_search.cpp:24
struct list node
Definition: avltree.cpp:13

◆ deleteNode()

node * deleteNode ( node root,
int  key 
)

Balanced Deletion

88 {
89 if (root == NULL)
90 return root;
91 if (key < root->data)
92 root->left = deleteNode(root->left, key);
93 else if (key > root->data)
94 root->right = deleteNode(root->right, key);
95
96 else {
97 // Node to be deleted is leaf node or have only one Child
98 if (!root->right) {
99 node *temp = root->left;
100 delete (root);
101 root = NULL;
102 return temp;
103 } else if (!root->left) {
104 node *temp = root->right;
105 delete (root);
106 root = NULL;
107 return temp;
108 }
109 // Node to be deleted have both left and right subtrees
110 node *temp = minValue(root->right);
111 root->data = temp->data;
112 root->right = deleteNode(root->right, temp->data);
113 }
114 // Balancing Tree after deletion
115 return root;
116}
node * minValue(node *root)
Definition: avltree.cpp:59
node * deleteNode(node *root, int key)
Definition: avltree.cpp:88
T data(T... args)

◆ getBalance()

int getBalance ( node root)

Returns difference between height of left and right subtree

38{ return height(root->left) - height(root->right); }
int height(node *root)
Definition: avltree.cpp:31

◆ height()

int height ( node root)

Returns height of tree

31 {
32 if (root == NULL)
33 return 0;
34 return 1 + std::max(height(root->left), height(root->right));
35}
T max(T... args)

◆ insert()

node * insert ( node root,
int  item 
)

Balanced Insertion

66 {
67 node *nn = createNode(item);
68 if (root == NULL)
69 return nn;
70 if (item < root->data)
71 root->left = insert(root->left, item);
72 else
73 root->right = insert(root->right, item);
74 int b = getBalance(root);
75 if (b > 1) {
76 if (getBalance(root->left) < 0)
77 root->left = leftRotate(root->left); // Left-Right Case
78 return rightRotate(root); // Left-Left Case
79 } else if (b < -1) {
80 if (getBalance(root->right) > 0)
81 root->right = rightRotate(root->right); // Right-Left Case
82 return leftRotate(root); // Right-Right Case
83 }
84 return root;
85}
node * insert(node *root, int item)
Definition: avltree.cpp:66
node * leftRotate(node *root)
Definition: avltree.cpp:50
node * createNode(int data)
Definition: avltree.cpp:21
int getBalance(node *root)
Definition: avltree.cpp:38
node * rightRotate(node *root)
Definition: avltree.cpp:41

◆ leftRotate()

node * leftRotate ( node root)

Returns Node after Left Rotation

50 {
51 node *t = root->right;
52 node *u = t->left;
53 t->left = root;
54 root->right = u;
55 return t;
56}

◆ levelOrder()

void levelOrder ( node root)

LevelOrder (Breadth First Search)

119 {
121 q.push(root);
122 while (!q.empty()) {
123 root = q.front();
124 std::cout << root->data << " ";
125 q.pop();
126 if (root->left)
127 q.push(root->left);
128 if (root->right)
129 q.push(root->right);
130 }
131}

◆ main()

int main ( void  )

Main function

134 {
135 // Testing AVL Tree
136 node *root = NULL;
137 int i;
138 for (i = 1; i <= 7; i++) root = insert(root, i);
139 std::cout << "LevelOrder: ";
140 levelOrder(root);
141 root = deleteNode(root, 1); // Deleting key with value 1
142 std::cout << "\nLevelOrder: ";
143 levelOrder(root);
144 root = deleteNode(root, 4); // Deletin key with value 4
145 std::cout << "\nLevelOrder: ";
146 levelOrder(root);
147 return 0;
148}
void levelOrder(node *root)
Definition: avltree.cpp:119

◆ minValue()

node * minValue ( node root)

Returns node with minimum value in the tree

59 {
60 if (root->left == NULL)
61 return root;
62 return minValue(root->left);
63}

◆ rightRotate()

node * rightRotate ( node root)

Returns Node after Right Rotation

41 {
42 node *t = root->left;
43 node *u = t->right;
44 t->right = root;
45 root->left = u;
46 return t;
47}