|
Algorithms_in_C++ 1.0.0
Set of algorithms implemented in C++.
|
Files | |
| file | adaline_learning.cpp |
| Adaptive Linear Neuron (ADALINE) implementation | |
| file | kohonen_som_topology.cpp |
| Kohonen self organizing map (topological map) | |
| file | kohonen_som_trace.cpp |
| Kohonen self organizing map (data tracing) | |
Namespaces | |
| namespace | machine_learning |
| A* search algorithm | |
Functions | |
| double | _random (double a, double b) |
| int | save_2d_data (const char *fname, const std::vector< std::valarray< double > > &X) |
| void | get_min_2d (const std::vector< std::valarray< double > > &X, double *val, int *x_idx, int *y_idx) |
| int | save_nd_data (const char *fname, const std::vector< std::valarray< double > > &X) |
Variables | |
| constexpr int | MAX_ITER = 500 |
| double _random | ( | double | a, |
| double | b | ||
| ) |
Helper function to generate a random number in a given interval.
Steps:
r1 = rand() % 100 gets a random number between 0 and 99r2 = r1 / 100 converts random number to be between 0 and 0.99| [in] | a | lower limit |
| [in] | b | upper limit |
| void get_min_2d | ( | const std::vector< std::valarray< double > > & | X, |
| double * | val, | ||
| int * | x_idx, | ||
| int * | y_idx | ||
| ) |
Get minimum value and index of the value in a matrix
| [in] | X | matrix to search |
| [in] | N | number of points in the vector |
| [out] | val | minimum value found |
| [out] | idx_x | x-index where minimum value was found |
| [out] | idx_y | y-index where minimum value was found |
| int save_2d_data | ( | const char * | fname, |
| const std::vector< std::valarray< double > > & | X | ||
| ) |
Save a given n-dimensional data martix to file.
| [in] | fname | filename to save in (gets overwriten without confirmation) |
| [in] | X | matrix to save |
| int save_nd_data | ( | const char * | fname, |
| const std::vector< std::valarray< double > > & | X | ||
| ) |
Save a given n-dimensional data martix to file.
| [in] | fname | filename to save in (gets overwriten without confirmation) |
| [in] | X | matrix to save |
|
constexpr |
Maximum number of iterations to learn